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NOMENCLATURE 

a, radius of cylinder or sphere; 
c, heat capacity; 
.lY heat flux density; 
k, thermal conductivity; 
L, latent heat ; 
T, temperature; 
x, distance from surface at T,; 
2, distance from corner at T, in plane of symmetry. 

Greek symbols 

a, thermal diffusivity ; 
I, root of equation (3); 
P. density. 

Subscripts 

e, effective value; 
f> at freezing front ; 
.L based on heat flux density; 
I, in unfrozen region; 
0, initial; 
s, in frozen region; 
w, at surface; 
x, based on freezing-front location. 

INTRODUCTION 

HEAT conduction with freezing or melting has been studied 
extensively in the 85 years since Stefan [l] considered the 
problem in connection with the thickness of the polar ice. 
Current applications of interest include the storage of energy, 
the underground storage of cryogenic fluids, construction 
and operations in the permafrost region, the casting of 
metals and the preservation of food and biological materials. 
Bankoff [Z], Mori and Araki [3], Gupta and Churchill [4] 
and others have reviewed many of these investigations and 
only the directly relevant will be noted herein. 

Neumann is credited by Carslaw and Jaeger ([S], p. 282) 
with the simple exact solution, given below, for phase-front 
motion parallel to a flat surface. Because of mathematical 
difficulties arising from the non-linearity associated with the 
movement of the phase-front, subsequent solutions are for 
highly idealized conditions, are approximate or are very 
complex in form. Even the numerical solutions have gener- 
ally been restricted to one dimension. Most of the approxi- 
mate methods suffer from complexity, inapplicability to two 
and three dimensions, inaccuracy or undefined accuracy. 
Hence, a simple, approximate method which is applicable 
for all boundary conditions and geometries, including those 
of two and three dimensions, still appears to be needed. 
The objective of this paper is to describe such a model. 

Neumann solution 

DEVELOPMENT 

The model is based on an examination of the Neumann 
solution ([S], p. 285) for freezing of material in the half- 
space, x > 0, at a uniform initial temperature, To, above 
the freezing point, T’, by the sudden application and main- 
tenance of a sub-freezing temperature, T,, at the surface. 
Heat transfer is postulated to take place by conduction 
only with different but constant physical properties in the 
two phases. The motion due to the change in density across 
the freezing-front is neglected. The solution can be written as 

and 

T-T, _ erfWWPz~, x < x 
Tr-Tw erf{n} / 
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where I, is the root of 

e - 1%/l, 
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It follows from equation (1) that 

x, = 21(a, t)l/’ 

and 

jv = k,(T,- Tw)/(na,t)1’2erf{,l) 

(1) 

(2) 

(3) 

(4) 

(5) 

Values of I and erfL have been tabulated and plotted 
for a wide range of the parameters L/c,(T,- T,,,), 
(To - Tf/Tf- T,)[(kpc)l/(kpc),]1’2 and as/a, by Churchill and 
Evans [6]. 

Zero latent heat 
For the limiting case of zero latent heat, and uniform 

(unsubscripted) properties, equations (1) and (2) reduce to 

(T-T,)/(T,-T,) = erf{x/2(at)“‘f (6) 

and equation (5) to 

j, = k(T, - T,)/(zat)l”. (7) 

For the T, isotherm 

xI = 2(at)“* erf-‘{(T, - T,)/(To - T,)}. (‘3) 
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FIG. 1. Freezing-front location outside a cylinder. -, 
Proposed approximation; -----, Flat plate: 0, Numerical 

solution (7): k,(Tf - T,)/(k,& - T,) = 0.5 and a&, = 1.0. 

Approximate solution 
Comparison with equation (5) indicates that equation (7) 

would give the exact solution for a finite latent heat if 

kpc = (kpc),[(TI-T,)/(To-T,)erf{lH’. (9) 

This behavior can be forced by letting k = k, and taking 
the following effective value for the thermal diffusivity: 

cC,j = a,[(To-T,)erf{l)/(T,-T,)]‘. (10) 

This procedure can also be interpreted as choosing an 
effective heat capacity : 

Cej = C,[(T,-T,)/(To-~,)erf(~J12 (11) 

and letting k/p = (k/p),. 
The temperature field obtained by the use of G(.j is some- 

what in error. However, the exact value of x/ can be 
obtained from equation (8) for T, # Tr by choosing 

u,, = a,[n/erf-‘{(Tr- T,)/(To - Tw))12 (12) 

ctex does not, of course, give the exact heat flux when used 
with equation (7). 

It is proposed to use these effective properties to approxi- 
mate the behavior in other geometries and for other 
boundary conditions. The use of these effective properties 
permits representation of the non-linear problem of freezing 
by the linear model of pure conduction, for which a multi- 
tude of successful analytical and numerical methods have 
been developed. The choice of a., or LX, depends on whether 
accuracy in the heat flux density or in the freezing-front 
location is of greater interest. If both quantities are im- 
portant, both models can be used. 

FIG. 2. Heat flux density at outside surface of a cylinder. 
-, Proposed approximation; -----, Flat plate; 0, 
Numerical solution (7): k,(Tf - T,)/k,(T, - T,) = 0.5 and 

a&, = 1.0. 

An analogous model can be developed based on the solu- 
tions for freezing with negligible sensible heat. However, no 
great advantage accrues relative to the model based on 
negligible latent heat and an equivalent body of methods 
and solutions does not exist. 

EVALUATION OF MODEL 

The proposed model can be demonstrated and tested by 
comparison ofthe results with the exact, numerical solutions 
for freezing for the following conditions. 

Freezing outside a long cylinder 
Tien and Churchill [7] obtained a solution for freezing 

outside a cylinder, under the same conditions as above for 
a flat plate, by numerical integration. The approximations 
obtained by using the above effective diffusivities with the 
analytical solution ([5], pp. 334-338 and [S]) for pure con- 
duction are compared with this numerical solution for 
several parametric values in Figs. 1 and 2. The flat plate 
solution, which is an asymptote for time approaching zero, 
is included. Excellent agreement is apparent. 

Freezing in n corner 
Jiji et al. [9], Lazaridis [lo] and Rathjen and Jiji [ll] 

have carried out numerical calculations for freezing in a 
quarter-space, with both surfaces at the same uniform tem- 
perature. In Fig. 3 these calculated values for the freezing- 
front location in the plane of symmetry are compared with 
the predicted values using the analytical solution for pure 
conduction ([s], p. 171) and the effective diffusivity from 
equation (12). The agreement is reasonably good over the 
wide range of conditions. 
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FIG. 3. Freezing-front location along the plane of symmetry 
in a square corner. 

n Jiji et al. [9] 1.35 9.2 33.9 
0.553 9.2 22.4 
0.250 9.2 19.6 

A Lazaridis [lo] 0.257 1.111 0.50 
0 Rathjen and 

Jiji [12] 0.5,2.00 1.0 0.1-10 

CONCLUSIONS 

Solutions for pure conduction with the effective diffu- 
sivities defined by equations (10) and (12) were found to 
agree closely with exact solutions for the heat flux density 
and the freezing front location, respectively. Similar accuracy 
is to be expected for the heat flux density and phase-front 
location in any geometry and with any boundary conditions, 

except that the freezing-front location cannot be calculated 
from equation (8) if To - 7”. Corresponding approximations 
for the cases of convection in the liquid phase, a freezing 
range, moisture migration in wet soil, etc., can readily be 
formulated. The detailed temperature fields can also be 
calculated using these approximations, with equation (10) 
expected to give a better representation for the region near 
the surface and equation (12) near the freezing front. 
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NOMENCLATURE Greek symbols 
Biot number, = hw/2k,; B, 
fin effectiveness, = Q/hw(T,- T,); 

slope of thermal conductivity-temperature curve 

generation number, = qw/Zh(T,- T.); 
divided by intercept k,; 

0, dimensionless temperature; 
heat-transfer coefficient; s, 
thermal conductivity; 

thermal conductivity parameter; 

fin length; 
(ke -k,)/k, = B(r, - r,). 

fin parameter, = 2 
( > 

112 Subscripts 
L; a, environment ; 

L1 b, fin base. 
volumetric rate of heat generation; 
heat-transfer rate; INTRODU~ION 

temperature; 
fin thickness; 

IN FIN literature one finds several papers focussing attention 

axial distance measured from fin tip; 
on the effect of internal heat generation on the performance 

dimensionless axial distance, =x/L. 
of convective fins. For example, Minkler and Rouleau [l] 
studied rectangular and triangular fins with uniform internal 


